blimit.Rd
Tests the local identifiability of a basic local independence model (BLIM).
blimit(K, beta = NULL, eta = NULL, pi = NULL, file_name = NULL)
a state-by-problem indicator matrix representing the knowledge structure. An element is one if the problem is contained in the state, and else zero.
vectors of parameter values for probabilities of careless errors, lucky guesses, and knowledge states, respectively.
name of an output file.
See Stefanutti et al. (2012) for details.
The blimit
function has been adapted from code provided by Andrea
Brancaccio, Debora de Chiusole, and Luca Stefanutti. It contains a function
to compute the reduced row echelon form based on an implementation in the
pracma package.
A list having the following components:
the number of items.
the number of knowledge states.
the number of parameters.
the rank of the Jacobian matrix.
the null space dimension.
the rank of submatrices of the Jacobian.
diagnostic information about specific parameter trade-offs.
the Jacobian matrix.
the parameter values used in the analysis.
Stefanutti, L., Heller, J., Anselmi, P., & Robusto, E. (2012). Assessing the local identifiability of probabilistic knowledge structures. Behavior Research Methods, 44(4), 1197–1211. doi:10.3758/s13428-012-0187-z
K <- as.binmat(c("0000", "1000", "0100", "1110", "1101", "1111"))
set.seed(1234)
info <- blimit(K)
#> 1/13 0000
#> 2/13 0001
#> 3/13 0010
#> 4/13 0011
#> 5/13 0100
#> 6/13 0101
#> 7/13 0110
#> 8/13 0111
#> 9/13 1000
#> 10/13 1001
#>
#>
#> B L I M I T
#> BASIC LOCAL INDEPENDENCE MODEL IDENTIFICATION ANALYSIS
#>
#> Number of items: 4
#> Number of knowledge states: 6
#>
#> Total number of parameters: 13
#> Jacobian matrix rank: 10
#> Null space dimension (NSD): 3
#> Identification problems detected:
#> Jacobian matrix is not full rank.
#>
#> Submatrix rank analysis table
#> [BETA] = submatrix of the careless error parameters
#> [ETA] = submatrix of the lucky guess parameters
#> [PI] = submatrix of the state probabilities
#> SUBMATRIX NPAR RANK NSD TRADEOFF_DIM
#> 1 [BETA] 4 4 0 0
#> 2 [ETA] 4 4 0 0
#> 3 [PI] 5 5 0 0
#> 4 [BETA ETA] 8 8 0 0
#> 5 [BETA PI] 9 8 1 1
#> 6 [ETA PI] 9 8 1 1
#> 7 [BETA ETA PI] 13 10 3 1
#>
#>
#> Item diagnostics for [BETA PI] submatrix
#> Second-order tradeoff dimensions: 1
#> -------------------------------
#> PARAMS BETA DIM1
#> 1 BETA1 0.056 0.00
#> 2 BETA2 0.305 0.00
#> 3 BETA3 0.299 -0.62
#> 4 BETA4 0.305 1.00
#> -------------------------------
#>
#>
#> Item diagnostics for [ETA PI] submatrix
#> Second-order tradeoff dimensions: 1
#> -------------------------------
#> PARAMS ETA DIM1
#> 1 ETA1 0.422 -1.02
#> 2 ETA2 0.314 1.00
#> 3 ETA3 0.005 0.00
#> 4 ETA4 0.114 0.00
#> -------------------------------
#>
#>
#> Item diagnostics for [BETA ETA PI] submatrix
#> Third-order tradeoff dimensions: 1
#> -------------------------------
#> PARAMS VALUES DIM1
#> 1 BETA1 0.056 0.0
#> 2 BETA2 0.305 0.0
#> 3 BETA3 0.299 -1.7
#> 4 ETA1 0.422 1.0
#> 5 ETA3 0.005 0.0
#> 6 ETA4 0.114 0.0
#> -------------------------------