delineate.Rd
Computes the knowledge structure delineated by a skill function.
delineate(skillfun, itemID = 1)
The skill function \((Q, S, \mu)\) indicates for each item in \(Q\)
which subsets of skills in \(S\) are required to solve the item. Thus,
\(\mu(q)\) is a set containing sets of skills. An item may have multiple
entries in skillfun
, each in a separate row identified by the same
itemID
.
See Doignon and Falmagne (1999, Chap. 4).
A list of two components:
the knowledge structure delineated by the skill function.
a list of equivalence classes of competence states; the members of these classes are mapped onto the same knowledge state by the problem function induced by the skill function \(\mu\).
Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer.
blim
.
# Skill function
# mu(e) = {{s, t}, {s, u}}, mu(f) = {{u}}
# mu(g) = {{s}, {t}}, mu(h) = {{t}}
sf <- read.table(header = TRUE, text = "
item s t u
e 1 1 0
e 1 0 1
f 0 0 1
g 1 0 0
g 0 1 0
h 0 1 0
")
delineate(sf)
#> $K
#> e f g h
#> 0000 0 0 0 0
#> 0010 0 0 1 0
#> 0100 0 1 0 0
#> 0011 0 0 1 1
#> 1011 1 0 1 1
#> 1110 1 1 1 0
#> 0111 0 1 1 1
#> 1111 1 1 1 1
#>
#> $classes
#> $classes$`0000`
#> s t u
#> [1,] 0 0 0
#>
#> $classes$`0010`
#> s t u
#> [1,] 1 0 0
#>
#> $classes$`0100`
#> s t u
#> [1,] 0 0 1
#>
#> $classes$`0011`
#> s t u
#> [1,] 0 1 0
#>
#> $classes$`1011`
#> s t u
#> [1,] 1 1 0
#>
#> $classes$`1110`
#> s t u
#> [1,] 1 0 1
#>
#> $classes$`0111`
#> s t u
#> [1,] 0 1 1
#>
#> $classes$`1111`
#> s t u
#> [1,] 1 1 1
#>
#>
## See ?probability for further examples.