Fits a Thurstone-Mosteller model (Case V) by maximum likelihood.

thurstone(M)

Arguments

M

a square matrix or a data frame consisting of absolute choice frequencies; row stimuli are chosen over column stimuli

Details

thurstone provides a front end for glm. See Critchlow and Fligner (1991) for more details.

Value

estimate

a vector of parameter estimates (scale values), first element is set to zero

goodness.of.fit

the goodness of fit statistic including the likelihood ratio fitted vs. saturated model (-2logL), the degrees of freedom, and the p-value of the corresponding chi-square distribution

tm.glm

the output from a call to glm

References

Critchlow, D.E., & Fligner, M.A. (1991). Paired comparison, triple comparison, and ranking experiments as generalized linear models, and their implementation in GLIM. Psychometrika, 56, 517--533. doi: 10.1007/bf02294488

See also

Examples

## Taste data (David, 1988, p. 116) taste <- matrix(c( 0, 3, 2, 2, 12, 0, 11, 3, 13, 4, 0, 5, 13, 12, 10, 0), 4, 4, byrow=TRUE) dimnames(taste) <- setNames(rep(list(c("A1", "A2", "A3", "A4")), 2), c(">", "<")) thurstone(taste) # Thurstone-Mosteller model fits OK
#> #> Thurstone-Mosteller model (Case V) #> #> Parameter estimates: #> A1 A2 A3 A4 #> 0.0000 0.9453 0.7682 1.3874 #> #> Goodness of fit (-2 log likelihood ratio): #> G2(3) = 4.533, p = 0.2094 #>