Fits a (multi-attribute) probabilistic choice model that accounts for the effect of the presentation order within a pair.

eba.order(M1, M2 = NULL, A = 1:I, s = c(rep(1/J, J), 1),
          constrained = TRUE)

# S3 method for eba.order
summary(object, ...)

Arguments

M1, M2

two square matrices or data frames consisting of absolute choice frequencies in both within-pair orders; row stimuli are chosen over column stimuli. If M2 is empty (default), M1 is assumed to be a 3d array containing both orders

A

see eba

s

the starting vector with default 1/J for all J aspect parameters, and 1 for the order effect

constrained

see eba

object

an object of class eba.order, typically the result of a call to eba.order

...

additional arguments

Details

The choice models include a single multiplicative order effect, order, that is constant for all pairs (see Davidson and Beaver, 1977). An order effect < 1 (> 1) indicates a bias in favor of the first (second) interval. See eba for choice models without order effect.

Several likelihood ratio tests are performed (see also summary.eba).

EBA.order tests an order-effect EBA model against a saturated binomial model; this corresponds to a goodness of fit test of the former model.

Order tests an EBA model with an order effect constrained to 1 against an unconstrained order-effect EBA model; this corresponds to a test of the order effect.

Effect tests an order-effect indifference model (where all scale values are equal, but the order effect is free) against the order-effect EBA model; this corresponds to testing for a stimulus effect; order0 is the estimate of the former model.

Wickelmaier and Choisel (2006) describe a model that generalizes the Davidson-Beaver model and allows for an order effect in Pretree and EBA models.

Value

coefficients

a vector of parameter estimates, the last component holds the order-effect estimate

estimate

same as coefficients

logL.eba

the log-likelihood of the fitted model

logL.sat

the log-likelihood of the saturated (binomial) model

goodness.of.fit

the goodness of fit statistic including the likelihood ratio fitted vs. saturated model (-2logL), the degrees of freedom, and the p-value of the corresponding chi-square distribution

u.scale

the unnormalized utility scale of the stimuli; each utility scale value is defined as the sum of aspect values (parameters) that characterize a given stimulus

hessian

the Hessian matrix of the likelihood function

cov.p

the covariance matrix of the model parameters

chi.alt

the Pearson chi-square goodness of fit statistic

fitted

3d array of the fitted paired-comparison matrices

y1

the data vector of the upper triangle matrices

y0

the data vector of the lower triangle matrices

n

the number of observations per pair (y1 + y0)

mu

the predicted choice probabilities for the upper triangles

M1, M2

the data matrices

Author

Florian Wickelmaier

References

Davidson, R.R., & Beaver, R.J. (1977). On extending the Bradley-Terry model to incorporate within-pair order effects. Biometrics, 33, 693--702.

Wickelmaier, F., & Choisel, S. (2006). Modeling within-pair order effects in paired-comparison judgments. In D.E. Kornbrot, R.M. Msetfi, & A.W. MacRae (eds.), Fechner Day 2006. Proceedings of the 22nd Annual Meeting of the International Society for Psychophysics (p. 89--94). St. Albans, UK: The ISP.

See also

Examples

data(heaviness) # weights judging data ebao1 <- eba.order(heaviness) # Davidson-Beaver model summary(ebao1) # goodness of fit
#> #> Parameter estimates (H0: parameter = 0): #> Estimate Std. Error z value Pr(>|z|) #> 1 0.013623 0.002390 5.700 1.20e-08 *** #> 2 0.028221 0.004352 6.484 8.94e-11 *** #> 3 0.065548 0.008816 7.435 1.04e-13 *** #> 4 0.185365 0.020133 9.207 < 2e-16 *** #> 5 0.397046 0.025805 15.386 < 2e-16 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Order effects (H0: parameter = 1): #> Estimate Std. Error z value Pr(>|z|) #> order 1.33734 0.11553 2.920 0.00350 ** #> order0 1.17391 0.06345 2.741 0.00613 ** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Model tests: #> Df1 Df2 logLik1 logLik2 Deviance Pr(>Chi) #> EBA.order 5 20 -39.250 -35.966 6.567 0.968574 #> Order 4 5 -45.025 -39.250 11.550 0.000677 *** #> Effect 1 5 -296.290 -39.250 514.081 < 2e-16 *** #> Imbalance 1 20 -57.532 -57.532 0.000 1.000000 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> AIC: 88.5 #> Pearson X2: 6.602
plot(ebao1) # residuals versus predicted values
confint(ebao1) # confidence intervals for parameters
#> 2.5 % 97.5 % #> 1 0.008939209 0.01830734 #> 2 0.019689916 0.03675138 #> 3 0.048269432 0.08282665 #> 4 0.145905587 0.22482461 #> 5 0.346468656 0.44762389 #> order 1.110901838 1.56378054