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Theoretical Background

The Basic Local Independence Model (BLIM) has received much attention in probabilistic
knowledge space theory (PKST):
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In this work, we extend the BLIM for the longitudinal assessment of learning, i.e. estimating the
probability of gaining or losing mastery of items between two points of measurement. Previous
approaches have been formulated using an extension of PKST which involves sets of skills
that are required to solve sets of items (Anselmi, Stefanutti, de Chiusole, & Robusto, 2017;
Stefanutti, Anselmi, & Robusto, 2011).

Model Definitions

A BLIM for two points of measurement, assuming local independence of P (Rt | Kt), reads:
P (R1, R2) =

∑
K1∈K

∑
K2∈K

P (R1 | K1) · P (R2 | K2) · P (K2 | K1) · P (K1)

K is a well-graded knowledge space. The outer fringe is: KO = {q ∈ Q\K : K ∪ {q} ∈ K}

We introduce the Item Gain Model (IGM) that only allows for gaining mastery of items:
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and the Item Gain Loss Model (IGLM) that also allows for losing it:
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Simulating Identifiability and Parameter Recovery

For |Q| = 3 there are six well-graded knowledge spaces, shown below. Model parameters were
randomly drawn once from uniform distributions:

• ηq, βq ∈ [.03, .05] or ηq, βq ∈ [0, .01]
• γq ∈ [.4, .6] and for the IGLM: λq ∈ [.1, .3]
• gq ∈ [.4, .6] with P (K1) = ∏

q∈K1 gq
∏

q∈KO
1

(1 − gq)
As has been established for the BLIM (Heller & Wickelmaier, 2013), parameters were esti-
mated via a maximum likelihood expectation-maximization algorithm (ML) and a minimum
discrepancy ML algorithm (MDML) (Maurer, 2020). In the latter, the likelihood is maximized
subject to the constraint that pairs of states are only considered if each state is at a minimal
distance d(R, K) = |(R\K) ∪ (K\R)| to its corresponding response pattern:

min
(K1,K2) ∈ K×K

{d (R1, K1) + d (R2, K2)} = min
K∈ K

d(R1, K) + min
K∈ K

d(R2, K)

For each structure, we simulated 100 data sets of 10000 subjects each. Data were fitted using
ML or MDML with a maximum of 20000 iterations.
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Results
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K Forw.-gr. Back.-gr. Bias (ML) Bias (MDML)
a b c a b c γa γb γc γa γb γc

K1 X X −.19 −.41 −.13 −.24
K2 X X X −.31 −.20
K3 X X X −.16 −.17 −.11 −.10
K4 X X X X −.17 −.10
K5 X X X −.06
K6 X X X X X X

Table 1: Bias (|median(θ̂) − θ| ≥ .05) for the IGM with ηq, βq ∈ [.03, .05]

Conclusions

• Biases for γq, λq in both IGM and IGML ...
• emerge for items in which K is not forward-graded
• occur for both estimation methods and even for very small ηq and βq

• have the same sign for (almost) every fitted model: bias(γq) < 0 and bias(λq) > 0
• are smaller (in absolute value) in more complex K

• Parameter identifiability ...
• is worse for IGLM compared to IGM
• may be related to the complexity of K
• may be hard to separate from properties of the ML algorithm

IGLM (K2)

0.0 0.2 0.4 0.6 0.8 1.0

ML estimation with ηq, βq ∈ [.03, .05]

P(000)
P(100)
P(010)
P(110)
P(111)

βa

βb

βc

ηa

ηb

ηc

γa

γb

γc

λa

λb

λc

0.0 0.2 0.4 0.6 0.8 1.0

ML estimation with ηq, βq ∈ [0, .01]

P(000)
P(100)
P(010)
P(110)
P(111)

βa

βb

βc

ηa

ηb

ηc

γa

γb

γc

λa

λb

λc

0.0 0.2 0.4 0.6 0.8 1.0

MDML estimation with ηq, βq ∈ [.03, .05]

P(000)
P(100)
P(010)
P(110)
P(111)

βa

βb

βc

ηa

ηb

ηc

γa

γb

γc

λa

λb

λc

0.0 0.2 0.4 0.6 0.8 1.0

MDML estimation with ηq, βq ∈ [0, .01]

estimates
true value

P(000)
P(100)
P(010)
P(110)
P(111)

βa

βb

βc

ηa

ηb

ηc

γa

γb

γc

λa

λb

λc

K Forw.-gr. Back.-gr. Bias (ML) Bias (MDML)
a b c a b c γa λa γb λb γc λc γa λa γb λb γc λc

K1 X X −.24 .27 −.41 .46 −.17 .25 −.29 .36
K2 X X X −.41 .46 −.27 .37
K3 X X X −.25 .29 −.27 .29 −.16 .25 −.15 .23
K4 X X X X −.17 −.22 −.28 .30 −.16 .25
K5 X X X −.16 .14 −.06 .12
K6 X X X X X X −.29 −.20 −.18 −.22 −.13 −.19

Table 2: Bias (|median(θ̂) − θ| ≥ .05) for the IGLM with ηq, βq ∈ [.03, .05]

Future Work

• Determine the causes for biases and (non-)identifiability
• Extend the models to incorporate different learning objects occuring between t1 and t2
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