
Journal of Mathematical Psychology 114 (2023) 102773

o
f
m
r
p
m
a
K
a
A
s
T
&
D
h

a
t
n
t
b
p
v
t

K

b
t
t
c
t
w
t
s
d
b
w
i
a

h
0

Contents lists available at ScienceDirect

Journal ofMathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Editorial

Special issue on knowledge structures: Theoretical developments and
applications
In an seminal paper, Doignon and Falmagne (1985) intr-
duced knowledge structures as a highly flexible set-theoretic
ramework for representing the organization of knowledge ele-
ents. Knowledge structures offer a precise non-numerical rep-

esentation of the individual strengths and weaknesses in a
articular domain. They provide the theoretical basis for imple-
enting efficient algorithms for the assessment of knowledge,
nd for personalized learning. Many empirical applications of
nowledge Structure Theory (KST) demonstrate its usefulness,
mong them the commercially successful educational software
LEKS.1 The literature on knowledge structures has grown mas-
ively in the past 37 years, and it is still expanding rapidly.
his development is documented by a series of textbooks (Albert
Lukas, 1999; Doignon & Falmagne, 1999; Falmagne, Albert,

oble, Eppstein, & Hu, 2013; Falmagne & Doignon, 2011) which,
owever, leave a gap of almost ten years.
This special issue collects current contributions that elaborate

nd generalize the theory and demonstrate today’s spectrum of
opics that are tackled from a KST perspective. The compilation of
ine papers covers work that extends the classical deterministic
heory of knowledge structures as well as the class of proba-
ilistic models that may be defined on it. Moreover, it addresses
ractical aspects of implementing KST on a large scale and its
alidation, and it paves the way to innovative applications beyond
he educational setting.

nowledge structures

The appeal of KST lies in the simplicity and generality of its
asic notions. A domain of knowledge is characterized by a set of
est items, and the knowledge state of an individual consists of
he subset of items that the individual in principle masters. The
ollection of all the possible states then forms a knowledge struc-
ure. Due to dependencies between items, not all subsets of items
ill occur as knowledge states. Notice that mastering an item is
o be distinguished from actually solving it, so that knowledge
tates are to be conceived as latent constructs. Emphasizing this
istinction indicates that KST originally focused on item-related
ehavior, and cognitive concepts entered the stage only later on
ithin a so-called skill- or competence-based extension: to each

tem the subset(s) of skills sufficient for mastering the item are
ssigned.

1 Assessment and LEarning in Knowledge Spaces (https://www.aleks.com/).
ttps://doi.org/10.1016/j.jmp.2023.102773
022-2496/© 2023 Elsevier Inc. All rights reserved.
Knowledge structures satisfying additional properties have re-
ceived particular attention. These structures include knowledge
spaces (closed under union), and quasi ordinal knowledge spaces
(closed under union and intersection), which were shown to be
in one-to-one correspondence to quasi orders defined on the do-
main Doignon and Falmagne (1985). These so-called precedence
relations describe dependencies between items. Another impor-
tant class is formed by the learning spaces, which are knowledge
spaces where learning (i.e., moving from one state in direction to
the full domain) proceeds in steps of adding single items to the
current state.

The so-called basic local independence model (BLIM; Doignon
& Falmagne, 1999) is the standard probabilistic model in KST.
It predicts the probability of any possible subset of correct re-
sponses based on a probability distribution on the states, and
parameters capturing the probability of a lucky guess and a
careless error, respectively, for each of the items. The charac-
terization of the identifiability of the parameters in the BLIM
has received considerable attention (e.g. Heller, 2017; Spoto, Ste-
fanutti, & Vidotto, 2012; Stefanutti, Heller, Anselmi, & Robusto,
2012), showing that there are identifiability issues depending on
structural properties of the underlying knowledge structure. For
an overview see Doignon, Heller, and Stefanutti (2018). Besides
the BLIM, various discrete- as well as continuous-time stochastic
process models were suggested (see Falmagne & Doignon, 2011)
in order to represent learning within the KST framework, and
for uncovering the latent state by appropriate questioning in
knowledge assessment.

Although quite concise, this introduction nevertheless supplies
the interested reader with the core concepts and results from
which the subsequently outlined contributions depart.

Deterministic theory

A series of four papers is devoted to further developing the
deterministic theory of knowledge structures.

In his contribution, Suck (2021) inverts the traditional KST
perspective of going from items to skills, and starts out from
a situation where a partially ordered set of skills is given. The
mathematical tool of a set representation of a partial order is then
used to construct a knowledge space or a learning space on a set
of items. This approach is based on the notion of the basis of a
knowledge space, conceived as the collection of minimal states
containing an item, from which the whole knowledge space can
be generated by taking unions. The elements of the basis may

https://doi.org/10.1016/j.jmp.2023.102773
https://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2023.102773&domain=pdf
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uite naturally be interpreted as the skills necessary for mastering
he respective item (Doignon, 1994). In the construction the given
kills are then identified with the basis of an appropriately chosen
et representation. Within this innovative perspective particular
tems (called multiple items) and partial orders (called fans) may
erve as building blocks of the set representation.
Anselmi, Heller, Stefanutti, and Robusto (2022) also start from

set of skills in a certain domain. They intend to develop a test
y collecting items such that the resulting test is as informative
s possible concerning the assessment of the skills an individ-
al has available. Different scenarios are covered, including the
onstruction of a test from scratch as well as the improvement
nd shortening of an existing test. In this approach items are
dentified with subsets of skills under a conjunctive (all skills
ecessary for mastering the item) or a disjunctive (each of the
kills sufficient for mastering the item) model. This lets one
dentify items that are redundant or missing in order to allow for
unique skill assessment, and thus may provide guidelines for
onstructing or revising tests.
The original conception of a knowledge structure as outlined

bove is formulated for dichotomous items which are either mas-
ered or not mastered. Heller (2021) shows that the construction
f Doignon and Falmagne (1985) establishing a one-to-one corre-
pondence between precedence relations on (dichotomous) items
nd the quasi ordinal knowledge spaces can be generalized to
pply to polytomous response formats, where response values are
artially ordered so that they form a lattice. In this respect, and
ecause the approach allows for item-specific response scales,
t generalizes previous approaches (Schrepp, 1997; Stefanutti,
nselmi, de Chiusole, & Spoto, 2020), which can be characterized
s special cases showing a kind of factorial structure. This general-
zation takes an important step for applying KST to psychological
esting, since it not only allows for treating situations where
artial credit is granted, but also admit application to personality
ests which usually are compiled of Likert type polytomous items.
he KST approach opens a new perspective to psychological test-
ng as it avoids aggregating information across items (as, for
xample, in a sum score), and thus provides a detailed picture
f the profile of a testee.
Putting these theoretical developments to practical use, how-

ver, requires to also generalize methods for building knowledge
tructures from data available for the dichotomous case. Schrepp
1999) introduced item tree analysis to KST to uncover a prece-
ence relation between items given the observed responses, a
ethod originally established for Boolean analysis of question-
aires (van Leeuwe, 1974), and refined later to inductive item
ree analysis (Schrepp, 2003). In their paper, Ünlü and Schrepp
2021) extend this approach to polytomous items with nominal
nd ordinal response scales (which may also be item-specific),
nd demonstrate its empirical applicability by analyzing survey
ata.

robabilistic models

The remaining five contributions to the special issue consider
robabilistic models defined on knowledge structures.
Based on the same parameter space as the BLIM, Doignon

2021) considers what he calls the Correct Response Model, which
redicts the probability of a correct response to any single item.
he paper investigates this model with respect to testability,
dentifiability and characterizability. Mainly drawing upon the
heory of polytopes (Grünbaum, 2003; Ziegler, 1998) it either pro-
ides explicit results or points out serious problems preventing a
efinitive answer.
In general, probabilistic knowledge structures impose no con-

traints on the probability distribution defined on the knowledge
2

states. The number of parameters in these probabilistic models
thus tends to be large, and may be drastically reduced if the
distribution can be built from parameters that are linked to items
rather than states. This is realized in the so-called Simple Learning
Model (Falmagne, 1994), where the parameters refer to the prob-
ability of ‘‘learning an item’’. Its application, however, is limited to
learning spaces. Noventa, Heller, and Stefanutti (2021) generalize
this model by suggesting a method to build the state probabilities
as products of the probabilities of single (or groups of) items on
a much wider class of regular knowledge structures. This result
allows for establishing more parsimonious probabilistic models
to handle situations that may otherwise be intractable due to the
combinatorial explosion of the number of states on increasingly
large domains.

Anselmi, Stefanutti, de Chiusole, and Robusto (2021) model
learning in knowledge structures through a bivariate Markov pro-
cess (Ephraim & Mark, 2012), consisting of a pair of continuous-
time stochastic processes that are jointly Markov. One of the
processes is observable and one latent, which in the considered
application corresponds to processes that refer to the naviga-
tion behavior in a web-based tutoring system and the associ-
ated learning process, respectively. Learning is represented by
transitions among states in a competence structure (the analog
of a knowledge structure with skills replacing items). This ap-
proach adds KST to the areas of successful application of bivariate
Markov processes, and goes beyond previous modeling efforts
by explicitly linking observable navigation behavior in a learning
environment to the latent learning path.

The contribution of Stefanutti, de Chiusole, and Brancaccio
(2021) bridges between the investigation of human problem solv-
ing and knowledge assessment, extending the application of KST
beyond the educational setting. It builds upon the derivation of
a learning space from a problem space (Newell & Simon, 1972)
as suggested by Stefanutti (2019), and proposes a discrete-time
Markov process modeling the solution process in a problem-
solving task based on the underlying knowledge state of the
problem solver. For empirical validation the developed theory
is applied to data from experimental studies on the Tower of
London test.

Cosyn, Uzun, Doble, and Matayoshi (2021) add a practical per-
spective to the special issue by considering the ALEKS educational
software system, a heavily used large-scale implementation of
KST. After highlighting the key theoretical concepts the system
builds upon, they evaluate its probabilistic assessment and learn-
ing mode using standard and KST-based measures. The analysis
relies on the data of millions of users. While the findings in
general are viewed as validating the KST approach, they are
interpreted as questioning the BLIM assumptions that the careless
error and lucky guess probabilities do not depend on the knowl-
edge state. The presented analysis reveals systematic deviations
from constancy as a function of the so-called layer, which cap-
tures the difficulty of an item relative to a state (Doble, Matayoshi,
Cosyn, Uzun, & Karami, 2019). This observation clearly stimu-
lates further research in probabilistic KST models generalizing the
BLIM.

Conclusions

The present special issue demonstrates that KST provides
a general framework that, even after a history of almost four
decades, offers plenty of potential for new theoretical devel-
opments as well as innovative applications. It paints a picture
of KST as a many-faceted research strand drawing upon tools
from different areas of mathematics (e.g., order theory, polyhe-
dral combinatorics, probability theory and stochastic processes).
The contributions document the current state of the art, show-
ing the diversity of theory building in KST and highlighting
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ome of its successful applications. In spite of the associated
ombinatorial complexity, these applications include large-scale
mplementations and cover areas beyond the originally intended
epresentation and assessment of knowledge. KST can offer an
lternative view in realms such as psychological testing and
ognitive psychology, and may help opening new avenues for
uture research.

eferences

lbert, D., & Lukas, J. (1999). Knowledge spaces: theories, empirical research,
applications. Mahwah, NJ: Lawrence Erlbaum Associates,

Anselmi, P., Heller, J., Stefanutti, L., & Robusto, E. (2022). Constructing, improving,
and shortening tests for skill assessment. Journal of Mathematical Psychology,
106, Article 102621.

nselmi, P., Stefanutti, L., de Chiusole, D., & Robusto, E. (2021). Modeling learning
in knowledge space theory through bivariate Markov processes. Journal of
Mathematical Psychology, 103, Article 102549.

Cosyn, E., Uzun, H., Doble, C., & Matayoshi, J. (2021). A practical perspective
on knowledge space theory: ALEKS and its data. Journal of Mathematical
Psychology, 101, Article 102512.

Doble, C., Matayoshi, J., Cosyn, E., Uzun, H., & Karami, A. (2019). A data-
based simulation study of reliability for an adaptive assessment based
on knowledge space theory. International Journal of Artificial Intelligence in
Education, 29, 258–282.

Doignon, J.-P. (1994). Knowledge spaces and skill assignments. In G. Fischer, &
D. Laming (Eds.), Contributions to mathematical psychology, psychometrics and
methodology (pp. 111–121). New York: Springer-Verlag.

Doignon, J.-P. (2021). A correct response model in knowledge structure theory.
Journal of Mathematical Psychology, 102, Article 102519.

Doignon, J.-P., & Falmagne, J.-C. (1985). Spaces for the assessment of knowledge.
International Journal of Man-Machine Studies, 23, 175–196.

Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Berlin, Heidelberg, and
New York: Springer-Verlag.

Doignon, J.-P., Heller, J., & Stefanutti, L. (2018). Identifiability of proba-
bilistic models, with examples from knowledge structure theory. In W.
H. Batchelder, H. Colonius, & E. N. Dzhafarov (Eds.), New handbook of
mathematical psychology, volume 2, modeling and measurement (pp. 128–184).
Cambridge, UK: Cambridge University Press.

Ephraim, Y., & Mark, B. L. (2012). Bivariate Markov processes and their
estimation. Foundations and Trends in Signal Processing, 6(1), 1–95.

Falmagne, J.-C. (1994). Finite Markov learning models for knowledge structures.
In G. Fischer, & D. Laming (Eds.), Contributions to mathematical psychology,
psychometrics, and methodology (pp. 75–89). New York: Springer.

Falmagne, J.-C., Albert, D., Doble, C., Eppstein, D., & Hu, X. (Eds.), (2013).
Knowledge spaces: applications in education. Berlin, Heidelberg: Springer.

Falmagne, J.-C., & Doignon, J.-P. (2011). Learning spaces: interdisciplinary applied
mathematics. Berlin, Heidelberg: Springer.

Grünbaum, B. (2003). Polytopes. In V. Kaibel, V. Klee, & G. M. Ziegler (Eds.),
Volume 221 of graduate texts in mathematics, Convex polytopes (2nd ed.). (pp.
35–60). New York, NY: Springer.
3

Heller, J. (2017). Identifiability in probabilistic knowledge structures. Journal of
Mathematical Psychology, 77, 46–57.

Heller, J. (2021). Generalizing quasi-ordinal knowledge spaces to polytomous
items. Journal of Mathematical Psychology, 101, Article 102515.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Noventa, S., Heller, J., & Stefanutti, L. (2021). Some considerations on the factor-
ization of state probabilities in knowledge structures. Journal of Mathematical
Psychology, 102, Article 102542.

Schrepp, M. (1997). A generalization of knowledge space theory to problems
with more than two answer alternatives. Journal of Mathematical Psychology,
41, 237–243.

Schrepp, M. (1999). On the empirical construction of implications between
bi-valued test items. Mathematical Social Sciences, 38, 361–375.

Schrepp, M. (2003). A method for the analysis of hierarchical dependencies
between items of a questionnaire. Methods of Psychological Research-Online,
19, 43–79.

poto, A., Stefanutti, L., & Vidotto, G. (2012). On the unidentifiability of a certain
class of skill multi map based probabilistic knowledge structures. Journal of
Mathematical Psychology, 56, 248–255.

tefanutti, L. (2019). On the assessment of procedural knowledge: From problem
spaces to knowledge spaces. British Journal of Mathematical and Statistical
Psychology, 72(2), 185–218.

tefanutti, L., Anselmi, P., de Chiusole, D., & Spoto, A. (2020). On the polytomous
generalization of knowledge space theory. Journal of Mathematical Psychology,
94, Article 102306.

tefanutti, L., de Chiusole, D., & Brancaccio, A. (2021). Markov solution processes:
Modeling human problem solving with procedural knowledge space theory.
Journal of Mathematical Psychology, 103, Article 102552.

tefanutti, L., Heller, J., Anselmi, P., & Robusto, E. (2012). Assessing local iden-
tifiability of probabilistic knowledge structures. Behavior Research Methods,
44, 1197–1211.

uck, R. (2021). Skills first — An alternative approach to construct knowledge
spaces. Journal of Mathematical Psychology, 101, Article 102517.

nlü, A., & Schrepp, M. (2021). Generalized inductive item tree analysis. Journal
of Mathematical Psychology, 103, Article 102547.

an Leeuwe, J. (1974). Item tree analysis. Nederlands Tijdschrift Voor de
Psychologie, 29, 475–484.

iegler, G. M. (1998). Lectures on polytopes (revised ed.). Berlin: Springer.

Jürgen Heller
Department of Psychology, University of Tübingen, Schleichstr.

4, 72076 Tübingen, Germany
E-mail address: juergen.heller@uni-tuebingen.de.

Available online 3 April 2023

http://refhub.elsevier.com/S0022-2496(23)00029-9/sb1
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb1
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb1
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb2
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb2
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb2
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb2
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb2
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb3
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb3
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb3
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb3
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb3
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb4
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb4
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb4
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb4
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb4
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb5
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb5
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb5
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb5
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb5
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb5
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb5
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb6
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb6
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb6
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb6
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb6
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb7
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb7
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb7
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb8
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb8
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb8
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb9
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb9
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb9
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb10
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb11
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb11
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb11
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb12
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb12
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb12
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb12
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb12
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb13
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb13
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb13
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb14
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb14
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb14
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb15
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb15
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb15
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb15
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb15
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb16
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb16
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb16
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb17
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb17
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb17
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb18
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb18
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb18
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb19
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb19
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb19
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb19
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb19
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb20
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb20
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb20
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb20
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb20
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb21
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb21
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb21
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb22
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb22
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb22
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb22
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb22
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb23
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb23
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb23
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb23
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb23
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb24
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb24
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb24
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb24
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb24
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb25
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb25
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb25
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb25
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb25
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb26
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb26
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb26
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb26
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb26
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb27
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb27
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb27
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb27
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb27
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb28
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb28
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb28
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb29
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb29
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb29
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb30
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb30
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb30
http://refhub.elsevier.com/S0022-2496(23)00029-9/sb31
mailto:juergen.heller@uni-tuebingen.de

	Special issue on knowledge structures: Theoretical developments and applications
	Knowledge structures
	Deterministic theory
	Probabilistic models
	Conclusions
	References


