endm.Rd
Knowledge structures and 200 artificial responses to four problems are used to illustrate parameter estimation in Heller and Wickelmaier (2013).
data(endm)
A list consisting of three components:
K
a state-by-problem indicator matrix representing the true knowledge structure that underlies the model that generated the data.
K2
a slightly misspecified knowledge structure.
N.R
a named numeric vector. The names denote response patterns, the values denote their frequencies.
Heller, J., & Wickelmaier, F. (2013). Minimum discrepancy estimation in probabilistic knowledge structures. Electronic Notes in Discrete Mathematics, 42, 49–56. doi:10.1016/j.endm.2013.05.145
data(endm)
endm$K # true knowledge structure
#> a b c d
#> 0000 0 0 0 0
#> 0110 0 1 1 0
#> 0101 0 1 0 1
#> 1110 1 1 1 0
#> 1101 1 1 0 1
#> 1011 1 0 1 1
#> 1111 1 1 1 1
endm$K2 # misspecified knowledge structure
#> a b c d
#> 0000 0 0 0 0
#> 0110 0 1 1 0
#> 1110 1 1 1 0
#> 1101 1 1 0 1
#> 1011 1 0 1 1
#> 1111 1 1 1 1
endm$N.R # response patterns
#> 0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111
#> 15 4 6 4 5 2 3 4 18 22 2 39 37 12 7 20
## Generate data from BLIM based on K
blim0 <- list(
P.K = setNames(c(.1, .15, .15, .2, .2, .1, .1), as.pattern(endm$K)),
beta = rep(.1, 4),
eta = rep(.1, 4),
K = endm$K,
ntotal = 200)
class(blim0) <- "blim"
simulate(blim0)
#> 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
#> 13 3 6 4 6 23 18 7 3 2 8 12 8 33 32 22
## Fit BLIM based on K2
blim1 <- blim(endm$K2, endm$N.R, "MD")