vcov.mpt.Rd
Returns the covariance matrix or the Fisher information matrix of a fitted
mpt
model object.
an object of class mpt
, typically the result of a
call to mpt
.
logical. Switch between logit and probability scale.
character. If vcov
(default), the covariance matrix is
returned; if fisher
, the Fisher information matrix is returned.
further arguments passed to or from other methods. None are used in this method.
If logit
is false, the covariance matrix is based on the observed
Fisher information matrix of the ML estimator on the probability scale.
This is equivalent to the equations for the covariance matrix given in Hu
and Batchelder (1994) and Hu (1999), although the implementation here is
different.
If logit
is true, the covariance matrix and the estimated information
matrix (Elandt-Johnson, 1971) of the ML estimator on the logit scale are
obtained by the multivariate delta method (Bishop, Fienberg, and Holland,
1975; Grizzle, Starmer, and Koch, 1969).
A (named) square matrix.
Bishop, Y.M.M., Fienberg, S.E., & Holland, P.W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge: MIT Press.
Elandt-Johnson, R. C. (1971). Probability models and statistical methods in genetics. New York: Wiley.
Grizzle, J.E., Starmer, C.F., & Koch, G. (1969). Analysis of categorical data by linear models. Biometrics, 25(3), 489–504. doi:10.2307/2528901
Hu, X. (1999). Multinomial processing tree models: An implementation. Behavior Research Methods, Instruments, & Computers, 31(4), 689–695. doi:10.3758/BF03200747
Hu, X., & Batchelder, W.H. (1994). The statistical analysis of general processing tree models with the EM algorithm. Psychometrika, 59(1), 21–47. doi:10.1007/bf02294263
mpt
.
data(retroact)
m <- mpt(mptspec("SR"), retroact[retroact$lists == 1, ])
vcov(m) # covariance matrix (probability scale)
#> c r u
#> c 0.0012895843 -0.0004079495 0.0006575142
#> r -0.0004079495 0.0020799675 -0.0003823152
#> u 0.0006575142 -0.0003823152 0.0027219988
vcov(m, logit = TRUE) # covariance matrix (logit scale)
#> logit(c) logit(r) logit(u)
#> logit(c) 0.16578167 -0.018546573 0.033934288
#> logit(r) -0.01854657 0.033441397 -0.006977916
#> logit(u) 0.03393429 -0.006977916 0.056398612
vcov(m, what = "fisher") # Fisher information
#> c r u
#> c 924.5542 144.00276 -203.10555
#> r 144.0028 515.94665 37.68201
#> u -203.1055 37.68201 421.73096