mbt.Rd
Fits a Mallows-Bradley-Terry (MBT) model by maximum likelihood.
mbt(data, bootstrap = FALSE, nsim = 1000, ...)
mbt
provides a front end for glm
. See Critchlow and Fligner
(1991) and Mallows (1957) for details.
a vector of parameter estimates (scale values) constrained to sum to unity
the goodness of fit statistic including the
likelihood ratio fitted vs. saturated model (-2logL), the degrees of
freedom, the p-value of the corresponding chi-square distribution, and
if bootstrap
is TRUE
the bootstrap p-value
the names of the non-zero frequency ranks
the vector of rank frequencies including zeros
the output from a call to glm
Critchlow, D.E., & Fligner, M.A. (1991). Paired comparison, triple comparison, and ranking experiments as generalized linear models, and their implementation in GLIM. Psychometrika, 56, 517–533. doi:10.1007/bf02294488
Mallows, C.L. (1957). Non-null ranking models. I. Biometrika, 44, 114–130. doi:10.1093/biomet/44.1-2.114
data(tartness) # tartness rankings of salad dressings (Vargo, 1989)
mbt(tartness, bootstrap=TRUE, nsim=500) # fit Mallows-Bradley-Terry model
#> Warning: glm.fit: fitted rates numerically 0 occurred
#>
#> Mallows-Bradely-Terry (MBT) models
#>
#> Parameter estimates:
#> a b c d
#> 0.0912 0.5182 0.2317 0.1588
#>
#> Goodness of fit (-2 log likelihood ratio):
#> G2(20) = 22.25, p = 0.3272, bootstrap p = 0.08
#>