The discrepancy between items and knowledge states

Alice Maurer & Jürgen Heller

Research Methods and Mathematical Psychology, Department of Psychology, Faculty of Science alice.maurer@uni-tuebingen.de

Let \mathcal{K} be a learning space on a domain Q and $q \in Q$ an item. Then the *first outer layer* and the *first inner layer* of a subset S of Q are defined as follows

> $S^{ol_1} := \{ q \notin S \mid \forall p \notin S, p \preccurlyeq q \implies p = q \},$ $S^{il_1} := \{ q \in S \mid \forall p \in S, q \preccurlyeq p \implies p = q \}.$

The *n*-th outer and inner layer are for $n \ge 2$ recursively defined as

$$S^{ol_n} := (S \cup \bigcup_{\substack{i=1 \ \cup \ i=1}}^{n-1} S^{ol_i})^{ol_1},$$

 $S^{il_n} := (S \setminus \bigcup_{\substack{i=1 \ i=1}}^{n-1} S^{il_i})^{il_1}.$

The *outer layer discrepancy* is

$$d_{layer}^{o}: Q \times \mathcal{K}_{\overline{q}} \to \mathbb{N}, \ (q, K) \mapsto d_{layer}^{o}(q, K) := n \text{ for } q \in K^{ol_n}.$$

The *inner layer discrepancy* is

Minimum discrepancy

Let \mathcal{K} be a knowledge structure defined on a domain Q, $q \in Q$ and $K \in \mathcal{K}$. Then we define:

 $K_{\overline{q},\supset} := \{ L \in \mathcal{K}_{\overline{q}} \mid K \supseteq L \},\$ $K_{q,\subset} := \{ L \in \mathcal{K}_q \mid K \subseteq L \}.$

The *outer minimum discrepancy* is

 $d_{\min}^{o}: Q \times \mathcal{K}_{\overline{q}} \to \mathbb{N}, \ (q, K) \mapsto d_{\min}^{o}(q, K) := \min_{L \in K_{q, C}} \left\{ |L \setminus K| \right\} \text{ for } q \notin K.$

The *inner minimum discrepancy* is

 $d_{\min}^{i}: Q \times \mathcal{K}_{q} \to \mathbb{N}, \ (q, K) \mapsto d_{\min}^{i}(q, K) := \min_{L \in K_{\overline{q}}} \{ |K \setminus L| \} \text{ for } q \in K.$

So overall the *minimum discrepancy* is defined as follows:

$$d_{\min}: Q \times \mathcal{K} \to \mathbb{N}, \ (q, K) \mapsto d_{\min}(q, K) := \begin{cases} d^o_{\min}(q, K) \text{ if } q \notin K, \\ d^i \cdot (q, K) \text{ if } q \in K. \end{cases}$$

$$d_{layer}^i: Q \times \mathcal{K}_q \to \mathbb{N}, \ (q, K) \mapsto d_{layer}^i(q, K) := n \text{ for } q \in K^{il_n}.$$

So the *layer discrepancy* is defined as follows:

$$d_{layer}: Q \times \mathcal{K} \to \mathbb{N}, \ (q, K) \mapsto d_{layer}(q, K) := \begin{cases} d_{layer}^o(q, K) \text{ if } q \notin K \\ d_{layer}^i(q, K) \text{ if } q \in K \end{cases}$$

 $m_{min}(q, \mathbf{r}) = q \subset \mathbf{r}$

Lemma

Let \mathcal{K} be a quasi ordinal knowledge space defined on a domain Q and $\preccurlyeq \subset Q \times Q$ the corresponding precedence relation. Then the following holds for all items $q \in Q$:

> $d_{\min}^{o}(q,K) = |\{p \notin K \mid p \preccurlyeq q\}|, \ \forall K \in \mathcal{K}_{\overline{q}},$ $d^{i}_{min}(q,K) = |\{p \in K \mid q \preccurlyeq p\}|, \ \forall K \in \mathcal{K}_{q}.$

Comparison of the discrepancies

Generalization

The layer discrepancy can be defined on arbitrary discriminative knowledge structures. Since equally informative items cannot be contained in any inner or outer layer, a generalization to non discriminative knowledge structures is not possible.

Observed Properties

- Minimum discrepancy depends on the knowledge structure.
- Layer discrepancy depends on the precedence relation only.
- A fair comparison between layer and minimum discrepancy is possible for quasi ordinal learning spaces only. In quasi ordinal learning spaces...
- ...minimum discrepancy and layer discrepancy differ in distinct cases.
- ...minimum discrepancy represents the length of a learning path
- ...the first inner and outer layer equal inner and outer fringe respectively.

Disjoint union of chains

Let \mathcal{K} be a quasi ordinal learning space on a domain Q and $\preccurlyeq \subseteq Q \times Q$ the corresponding precedence relation. The structure \mathcal{K} satisfies the *duc condition*, if for all $p, p', q \in Q$:

> $(p \preccurlyeq q \text{ and } p' \preccurlyeq q) \text{ or } (q \preccurlyeq p \text{ and } q \preccurlyeq p')$ $\implies p \preccurlyeq p' \text{ or } p' \preccurlyeq p$

Theorem

Then the following equivalence holds:

 \mathcal{K} satisfies the duc - condition \iff $d_{laver}(q, K) = d_{min}(q, K), \ \forall q \in Q \text{ and } K \in \mathcal{K}$

- The Hasse diagrams of precedence relations, which follow the duccondition, are disjoint unions of chains.
- The duc-condition is a rather strict constraint.
- A partial order as the precedence relation or a quasi ordinal learning space which is a distributive graded lattice are not sufficient for duc.

Motivation and future research

Same error probabilities for everyone?!

Item 1: Explain the hairy ball theorem!

Figure 2: Hasse diagramms for an example on a domain with 6 items.

Table 1: Minimum discrepancy and layer discrepancy for the example in Figure 1. The rows indicate states, columns indicate items. Negative numbers represent inner discrepancies, positive numbers outer discrepancies.

	\mathcal{K}_1											\mathcal{K}_2											
	d_{layer}					d_{min}						d_{layer}						d_{min}					
а	b	С	d	е	f	а	b	С	d	е	f	а	b	С	d	е	f	а	b	С	d	е	f
Ø -1	-1	-2	-2	-3	-3	-1	-1	-3	-2	-5	-3	-1	-1	-2	-2	-3	-3	-1	-1	-3	-2	-5	-3
$\{a\}$ 1	-1	-2	-2	-3	-3	1	-1	-2	-2	-4	-3	1	-1	-2	-2	-3	-3	1	-2	-2	-4	-4	-5
$\{b\}$ -1	1	-2	-1	-3	-2	-1	1	-2	-1	-4	-2	-1	1	-2	-1	-3	-2	-2	1	-2	-1	-4	-2
$\{a, b\}$ 1	1	-1	-1	-2	-2	1	1	-1	-1	-3	-2												
$\{b, d\}$ -1	2	-2	1	-3	-1	-1	2	-2	1	-3	-1	-1	2	-2	1	-3	-1	-3	2	-3	1	-3	-1
$\{a, b, c\}$ 2	2	1	-1	-2	-2	2	2	1	-1	-2	-2	2	2	1	-1	-2	-2	2	2	2	-2	-2	-3
$\{a, b, d\}$ 1	2	-1	1	-2	-1	1	2	-1	1	-2	-1												
$\{b, d, f\}$ -1	3	-2	2	-3	1	-1	3	-2	2	-3	1	-1	3	-2	2	-3	1	-3	3	-3	2	-3	1
$\{a, b, c, d\}$ 2	2	1	1	-1	-1	2	3	1	1	-1	-1												
$\{a, b, d, f\}$ 1	3	-1	2	-2	1	1	3	-1	2	-2	1												
$\{a, b, c, d, e\}$ 3	3	2	2	1	-1	3	4	2	2	1	-1	3	3	2	2	1	-1	3	4	3	2	2	-1
$\{a, b, c, d, f\}$ 2	3	1	2	-1	1	2	4	1	2	-1	1												
$\{a, b, c, d, e, f\}$ 3	3	2	2	1	1	3	5	2	3	1	1	3	3	2	2	1	1	3	5	3	3	3	1

Figure 1: On the left an unexperienced student, who is new to the topic. On the right an experienced student, who knows all the prerequisites of Item 1.

Generalization of the BLIM:

- The assumption of constant error probabilities across persons should be relaxed.
- The response error probabilities β and η depend on the item and on the discrepancy between the item and the persons knowledge state.
- There should be as few new parameters introduced as possible.

Figure 3: Hasse diagrams of all antisymmetric precedence relations on $Q = \{a, b, c\}$.

References

Doble, C., Matayoshi, J., Cosyn, E., Uzun, H., and Karami, A. (2019). A data-based simulation study of reliability for an adaptive assessment based on knowledge space theory. International Journal of Artificial Intelligence in Education, 29(2).

EMPG 2024 * September 04-06 * Tübingen, Germany