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Abstract

Rasch-trees are a flexible method for detecting differential item functioning (DIF) in

data where the Rasch model applies. The current work explores the effect of model

misspecification on Rasch-trees, more precisely the performance of Rasch-trees as a

global DIF test in data where the 2PL or 4PL model applies. Different conditions

were simulated varying the DIF value, the number of items affected by DIF, the

parameter(s) that were affected, the underlying model as well as if the covariable,

which defines the DIF, was categorical or continuous. DIF was always simulated in

the item discrimination for the 2PL model and in the pseudo guessing and slipping

error parameter for the 4PL model. In some conditions, DIF was simulated in the

item easiness parameter as well. The performance of the Rasch-trees was evaluated

in regard to the Power, Type-I-Error rate and the Root mean square error (RMSE)

of the item easiness parameter estimation. The method performed better with data

under the 2PL model than under the 4PL model. The Power was higher, the RMSE

was not augmented unconditionally, the number of identified subgroups was closer

to the simulated value. Regarding the 4PL model, DIF in a continuous covariable

yielded better results. The Type-I-Error rate was generally not elevated.

Keywords: Rasch-trees, Differential item functioning, Rasch, 2PL, 4PL, Item re-

sponse theory, Model misspecification



On the detection of DIF under higher level IRT-models using Rasch-trees 1

Contents

Introduction 2

Item response theory models . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Differential item functioning . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Categorizing DIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Rasch-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Methods 12

Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Criterion variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Results 16

Simulations without DIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Probability of a significant result . . . . . . . . . . . . . . . . . . . . . . . 17

Number of end nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Root Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Crossing DIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

DIF in two covariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Discussion 24

Stability of the Rasch model . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Bibliography 31

Appendix 33



On the detection of DIF under higher level IRT-models using Rasch-trees 2

Since he introduced his famous model in "An individualistic approach to item

analysis" (Rasch, 1966), Georg Rasch’s name is known to anyone even vaguely in-

terested in test theory. Looking back, one would have to call his work inspiring.

Since then and up until today, his model served as the basis of countless articles and

works. Over a million articles can be found with the keyword "Rasch" in the title

on Google scholar alone (retrieved on the 2nd of October, 2020). The current thesis

is included in this list, as is Strobl, Kopf, and Zeileis (2015), which developed a

recursive method of detecting differential item functioning (DIF) on the basis of the

Rasch model and named it Rasch-trees. The current thesis investigates this method

and its performance under model misspecification. For that, certain restrictions set

by Rasch himself are overstepped and the consequences are explored. Before that,

Item response models, including the Rasch model, are introduced. An explanation

of Rasch-trees and the related problem of DIF follows. The motivation, methods,

and results of various simulations, which explore the use of Rasch-trees on data,

which was not simulated under the Rasch model, are presented and discussed.

Item response theory models

Models of the item response theory (IRT) are centred around the probability

of a person’s answer to an item. In the case of the dichotomous Rasch model, this

probability is given by Formula 1. Polytomous expansion of the Rasch model and

other IRT models exist (Andrich, 1978; Masters, 1982; Samejima, 1969). However,

the thesis at hand will not consider these due to the base level explorative nature of

the work. All models are used in their dichotomous form.

P (Xij = 1 | θi, bj) =
eθi+bj

1 + eθi+bj
(1)

Formula 1: Probability of item j being answered correctly by person i under the Rasch
model with θi representing the person’s ability and bj representing the item’s easiness.

A helpful visual representation for IRT models are the item characteristic curves

(ICCs). Based on Formula 1, an ICC of the Rasch model depicts the probability of

a specific item (easiness) dependent on the latent dimension θ. A person’s ability θi
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as well as an item’s easiness bj are located on this spectrum. Figure 1 (left) shows

ICCs for three items according to the Rasch model. The easiness bj of an item can

be read off by determining the point when the ICC surpasses P(Xj = 1| θ, bj) = .5

on the continuous latent dimension θ. Note that the curves all have the same slope

and only differ in their position on the abscissa. This depicts the specifications of

the Rasch model as the most restrained IRT model.
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Figure 1. Item characteristic curves for three items according to the Rasch model (left),
2PL model (middle) and 4PL model (right) with varying parameters.

Extensions of the Rasch model include the two parameter model (2PL model,

Birnbaum (1968)), which adds an individualistic slope for the ICC of each item

aj (Formula 2, Figure 1 (middle)). This means that some items can distinguish

person abilities at different levels. The parameter aj therefore represents an item’s

discrimination. The name of the model refers to the number of parameters relating

to the items. Subsequently, the Rasch model can also be interpreted as a special

case of the 2PL model with the constraint that aj = 1 ∀ j = 1, . . . ,m. Barton and

Lord (1981) introduced another expansion, the four parameter model (4PL model),

which expands the 2PL model further by adding two new item parameters. A lower

asymptote cj and a higher asymptote dj in the ICCs (Formula 3, Figure 1 (right)).

The inclusion of cj with cj > 0 makes it more likely that a person with a low θ

score will answer item j correctly. It can therefore be interpreted as a guessing

parameter. On the other hand, dj < 1 lowers the probability of a correct answer
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for highly skilled persons. It therefore represents the possibility of a slipping error.

The 4PL model can be restrained as well with cj = 0 and dj = 1 ∀ j = 1, . . . ,m,

resulting in the 2PL model again.

P (Xij = 1 | θi, bj, aj) =
eaj(θi+bj)

1 + eaj(θi+bj)
(2)

P (Xij = 1 | θi, bj, aj, cj, dj) = cj + (dj − cj)
eaj(θi+bj)

1 + eaj(θi+bj)
(3)

Formula 2 & 3: Probability of item j being answered correctly by person i under the 2PL
(above) and 4PL (below) model respectively with θi representing the person’s ability, bj
representing the item’s easiness, aj representing the item’s discrimination, cj representing
item-specific guessing and dj representing item-specific slipping errors.

Rasch (1966) acknowledged some of these expansions when introducing the

Rasch model, but pointed out that the restrictions he chose, create some desirable

attributes. The most notable being the sufficient statistic for θi which is delivered

in the sum of correctly answered items given the item’s easiness are known. The

same is true for the bjs, where the number of people in a given sample that answer

the items correctly is a sufficient statistic. From this, the conditional maximum

likelihood (ML) estimation was derived (Andersen, 1970). It is possible within the

constraints of the Rasch model and provides parameter estimation without further

assumption as for example the marginal ML estimation has to make. The marginal

ML estimation is a helpful tool for parameter estimations in higher level IRT models

(models with more than one item parameter), because it bypasses the need for a

sufficient statistic for θi. In order to do that, it assumes the distribution of the

θi parameter (Bock & Aitkin, 1981). As the Rasch model can use conditional ML

estimation, there is no need for this assumption.

For the same reasons, person parameters can be compared independently to the

items and in turn the item easiness can be compared independently to the sample.

Furthermore, the Rasch model requires smaller sample sizes as the specifications on

item parameters obviates the need to estimate their values. A stable estimate of the

fewer parameters in the Rasch model is possible with a small sample size. These

desirable attributes form the key advantages of the Rasch model. On the other

hand, the restrictions of the Rasch model amplifies the problem of model fit. More
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parameter specifications lead to a less flexible model. The Rasch model is therefore

more likely to experience poor model fit. Although this can also be caused by a

variety of reasons, for example differential item functioning.

Differential item functioning

DIF describes different subgroups of a population having different probabilities

of a correct answer for a specific item. It is to be distinguished from impact which

refers to subgroups having a stable consistent difference in ability. Impact also leads

to different probabilities of a correct answer between the groups. DIF occurs when

the subgroups are matched with respect to the ability yet the probabilities still differ

(Dorans, 1989). Impact is represented in the θi dependent on the group affiliation. It

is therefore compatible with item response modelling. DIF represents an additional

influence on P (X = 1|θi, bj)(in the case of the Rasch model) other that the given

parameters θi and bj, which violates the model’s assumptions. Impact will not be

further explored in the current study to keep the focus on DIF detection.

In the field, the true abilities of subgroups are not observable. This makes

the distinction between DIF and impact a challenge for which many solutions have

been proposed for various models and kinds of DIFs over the years (Andersen, 1973;

Glas, 1999; Suárez-Falcón & Glas, 2003). Andersen (1973) proposed the Likelihood

quotation test building on the Rasch model’s property, that item easiness is not

independent of a particular sample. It uses this to construct a test which compares

the product of the Likelihood of θ in the considered subgroups with the Likelihood in

the whole sample. The method presupposes awareness of the subgroups where DIF

is supposedly occurring. This is a disadvantage that most methods for detecting

DIF share. It is inarguable that there are possible and even likely scenarios in which

DIF does occur concerning an unexpected covariable. An example would be IQ

tests and the covariable of pre-existing experience with IQ tests. It is well known

that most items in IQ tests are trainable. Therefore, the participant’s experience

should create DIF in the item’s easiness, but this is not accounted for normally.

The typically examined covariables such as age, gender and education are far from

the only factors that can create DIF. Furthermore, traditional DIF tests like the
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Andersen Likelihood quotation test need to know the exact cut point which creates

the subgroups in the covariable. Age for example is divided by decades in most

test manuals with no examination or evidence that the item functioning differs in

parallel to the decade system (for example Costa Jr and McCrae (2008)).

The traditional DIF detection tests also fail to recognise more complex or not

standard types of DIF (Strobl et al., 2015). A short insight into existing categories

of DIF helps to understand this difficulty.

Categorizing DIF

DIF was introduced above as relating to groups, i.e. a covariable defines dis-

tinct groups which have different probabilities of a correct answer for an item. These

groups can be clearly defined by categorical covariables. One example being gender

and gender bias of tests. Subgroups can also be defined by continuous covariables

as is often the case with age. Although there is no clear understanding if DIF in

this case is functioning categorically or continuously, most methods for detecting

DIF assume a categorical divide created by the continuous covariables. This dis-

tinction also leads to a modelling difference. When DIF is viewed categorically, the

item easiness can be adjusted in each group, making DIF a function of the items.

Continuous DIF can be described by a multidimensional model, meaning that more

than one person parameter is modelled (Ackerman, 1992). DIF is then seen as a

secondary trait of the person which is disproportional distributed in regard to a

covariable, rather than an attribute of the items. Although continuous covariables

were used for simulating DIF in the current study, DIF was simulated as if the cut

point created a dichotomy. This was in parallel to the Rasch-trees understanding of

DIF.

Because DIF is a function of the items, it effects the estimation of the item

easiness parameter in the Rasch model. DIF can effect every item parameter. This

is reflected in the simulated conditions. As Rasch-trees are based on the Rasch

model, only the estimation of the item easiness parameter can be detected. Other

parameters have specified values in the Rasch model and are therefore not estimated.

Data simulation under higher level IRT models provides the possibility of cross-
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ing DIF. The name refers to the crossing ICCs of the relevant subgroups (Figure

2). This means, that for certain range of θ one group has a higher probability of

answering the observed item correctly but a lower probability in other ranges of θ.

Therefore, the difference between the probability of a correct answer in two groups

changes sign (Li & Stout, 1996). It stands in contrast to uniform DIF, where the

ICCs of the subgroups are parallel to each other, but offset on the dimension θ.

Crossing DIF is to be distinguished from non-uniform DIF, referring to DIF where

the ICCs of the subgroups are not parallel, but don’t necessarily cross. Crossing DIF

presupposes an intersection point between the curves. A cut point is guaranteed if

there is no DIF in the item easiness parameter as both curves display a probability

of .5 at their item easiness, creating an intersection point. Crossing DIF is there-

fore present when DIF occurs in the item discrimination, but not the item easiness

parameter. This is not the only condition under which crossing DIF occurs, but this

is how it will be conceived in the present study. Crossing DIF is of special interest,

because it is seldom detected by traditional DIF tests. There are tests especially

created for registering crossing DIF (Li & Stout, 1996), but this prompts the same

difficulty as the selection of covariables. When crossing DIF is not suspected, these

methods will not be used, making the detection of crossing DIF unlikely.
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Figure 2. Item characteristic curves of one item and two groups showing crossing DIF
(left) and uniform DIF (right).
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Figure 3. Example Rasch-tree with detected DIF in two covariables, resulting in four end
nodes. The covariable age has different cut points depending on the gender subgroup.

Rasch-trees

A more flexible alternative to traditional DIF tests was introduced by Strobl

et al. (2015) with the method of Rasch-trees. The goal was to be able to detect

DIF without defining the cut points in covariables ahead of the analysis and also to

provide results that are easy to interpret. This easy interpretation was implemented

with a visualisation tool, which makes the tree structure visible (Figure 3). Rasch-

trees are based on the principle of recursive partitioning of the data in all of the

necessary subgroups. For that, the item easiness parameters are estimated in the

entire sample. Then, the stability of the parameter estimation is considered for every

available covariable. Finally, the sample is split in regard to the covariable which

shows the most instability at the cut point that will improve the model fit the most.

Two subgroups are created and the three steps are repeated in these subgroups. The

process repeats until there is no significant difference found between further possible

subgroups or until the number of observations in a resulting subgroup would be to

small to ensure a stable estimation of the item parameters. How small this number

of observations has to be is not set by the authors but left for the user of Rasch-trees

to decide.
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For the instability analysis in step two, the individual deviation from the para-

meter estimation with the entire sample is ordered regarding each of the available

coavariates separately (Formula 6). If DIF is present in respect to a covariable, the

ordered deviations should show a systematic change in respect of this covariable.

Strobl et al. (2015) then use two different test statistics depending on the relevant

covariable. Formula 5 is used for numerical variables and is limited by the suprenum

of a tied-down Bessel process. For categorical variables, Formula 4 is used and lim-

ited by a χ2-distribution. On each level, every possible covariable is tested in this

way and the next sample split occurs at the covariable with the smallest p-value.

Sl = maxi=i,...,̄i(
i

n
· n− i

n

−1

)‖Wl(
i

n
)‖2

2 (4)

Sl =

Q∑
q=1

n(
n∑
i=1

I(xil = q))−1‖∆qWl(
i

n
)‖2

2 (5)

with Wl(t) = V̂−
1
2n−

1
2

bn·tc∑
i=1

Ψ(u(i|l), b̂) (0 ≤ t ≤ 1) (6)

Formula 4, 5 & 6: Test statistics measuring the estimation instability with i = 1, . . . , n
numbering the observations consequently to the lth covariable, q = 1, . . . , Q marking the
qth hypothetical category, t defining a fraction of the sample, ∆q the increment within the
qth category and V̂ representing the outer-product-of-gradients estimate of the covariance
(Strobl et al., 2015).

After selecting the covariable, the cut point is determined. Item parameters

are estimated for the hypothetical of every possible cut point. The conditional ML

estimation is used for this. The estimations for both groups are added within and

between the groups (Formula 7) and the cut point which maximises this sum is

chosen. This creates two subgroups in which the process is repeated until one of the

stop criterion is reached.

Strobl et al. (2015) present many desirable attributes of Rasch-trees in their

∑
i∈L(ξ)

Ψ(ui, b̂
(L)) +

∑
i∈L(ξ)

Ψ(ui, b̂
(R)) (7)

Formula 7: Sums of the conditional ML estimation over every person i in the two subgroups
created by a hypothetical cut.
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introductory paper. In regard to the Type-I-Error, the trees are fairly conservative,

the Power only reduces meaningfully when the cut points reach the periphery in a

covariable and it detects more complicated DIF forms more reliably than traditional

tests such as the Andersen likelihood test. Furthermore, the results are easy to

interpret and the cut points are detected instead of given in advance, which are the

main goals of Rasch-trees. Besides this very detail oriented approach, Rasch-trees

can also be used as a test of overall item fit. General person-free estimation of the

item easiness implies the same estimations for every possible subgroup with every

possible cut point. The Rasch model therefore applies when no split is performed

with the Rasch-tree method resulting in only one node. This does not mean that

the Rasch model applies in every subgroup created by Rasch-trees as the stopping

criteria for splitting also includes factors like a sample size, which is too small.

The simulation studies in Strobl et al. (2015) of course assume the intended

use case for Rasch-trees, i.e. DIF detection under the specifications, that the Rasch

model generally applies. The purpose of the current work is to investigate the

behaviour of Rasch-trees when the Rasch model no longer applies. More specifically,

a variation of DIF conditions are simulated under the general framework of the 2PL

or 4PL model. While the Rasch model is the most used and the most comprehensible

IRT model, it is also the most restrained, making its specifications and implications

varying degrees of unrealistic in the field. A multiple choice test for example has

a clearly defined guessing probability for the correct answer regardless of ability.

Especially with dichotomous items as used here, the probability for guessing the

correct answer is high. The Rasch model however does not account for guessing.

This influences parameter estimations, making them less accurate. In this context,

the assumption that a person will answer an item accordingly only to her true ability

is unrealistic as well as hindering to the estimation of people’s ability (Liao, Ho, Yen,

& Cheng, 2012). The 4PL model would be more applicable.

This recommendation prerequisites the wide spread acceptance and usage of

IRT models, which is not the case. Most test manuals still use classical test theory

and only mention IRT and the Rasch model briefly (for example Costa Jr and

McCrae (2008)). Research in the differences and extensions of IRT models is without
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any doubt important and should be fostered right now, yet comprehensive usage of

appropriate IRT models is a long way to go still. In the mean time, it is relevant

to discuss the effects of model misspecifications, i.e. the Rasch model’s usage in

cases where it does not apply. To this end, a series of simulations were performed,

all constructing data either under the 2PL or the 4PL model with different levels

of DIF. The constructed data were then examined with the Rasch-tree method and

results were compared. The study was completely explorative with overarching

thematic questions rather than specific hypothesis. The most prominent question

being how much of a problem the fitting of the data to a higher level IRT model

causes for the DIF detection. This is an extension of the question, how important

the specification of the "right" IRT model is in general, which will be considered

more thoroughly in the discussion.

Can DIF detection still reliably succeed even with model misspecification or is

the selection of the right IRT model a necessary prerequisite for any DIF investiga-

tion? In the field of course, no data set perfectly corresponds to one model, IRT or

otherwise. The data in this study is created from a specific model while observed

data can only be described adequately by any model. Nevertheless, simulations

can give a more unambiguous insight than field studies and offer an estimation on

how catastrophic wrong assumptions and specifications can be in this particular

matter. Due to the explorative nature of the study, there were no concrete hypo-

thesis. Instead, a focus was set in observing patterns in the gathered data with no

confirmatory statistical analysis.

It was not expected that the Rasch-trees show comparable results as in Strobl

et al. (2015). A decrease in reliability and general performance is to be expected as

the Rasch-tree method was not build for the circumstances presented in the present

work. The current results are therefore not a critic in any kind, but an examination

of possible scenarios.
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Methods

All simulations were implemented in the R system for statistical computing

(R Core Team, 2019). The Rasch-tree method was conducted with the package

"psychotree" (Strobl et al., 2015).

Simulation procedure

In order to simulate data from different models with or without DIF and gather

the criterion variables, the following steps were performed.

1. A standard normally distributed vector of person parameters was specified.

Neither parameter space nor ability distribution are constrained in IRT models,

but a normal distribution is often assumed.

2. A matrix P containing the probabilities of a correct answer was computed

with every cell pij defined by equation 2 or 3, depending on the used model.

The necessary item parameters were either set overall (bj) or by the simulated

condition (aj, cj, dj). If DIF was simulated, P was manipulated according to

the specifications.

3. The responses were drawn from a binomial distribution with n = 1 using the

matrix P as probabilities.

4. The Rasch-tree method was applied including the estimation of the item eas-

iness parameter in the end nodes under the Rasch model. The α-level for the

decision of DIF detection was set to .1. Rasch-trees tend to be conservative in

this decision as Strobl et al. (2015) demonstrated.

5. The number of end nodes, significant results and the RMSE were collected.

Experimental settings

A total of 516 conditions pooled into 17 groups were simulated with varying

factors while the following terms remained the same over all conditions.
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• Number of replications.

For every condition, 500 replications were performed to balance accurate es-

timations of the reported values and the limited computing power available.

• Number of observations.

Each replication created a sample size of 1000 observations.

• Number of items.

A total number of 10 items were simulated in each condition. The simulated

easiness parameter were chosen as b = {−2,−1, 56,−1.11,−0.67,−0.22, 0.22, 0.67,

1.11, 1.56, 2} in order evenly cover the whole ability parameter spectrum and

still ensure stable simulations for all easiness parameters. A Person-item map

showcasing b̂ and θ̂ of one sample on the same latent dimension is shown

in Figure 4. If the item discrimination was not explicitly differed, it was

set to a = {.60, .64, .69, .73, .78, .82, .87, .91, .96, 1} to reflect a cohesive test

with varied item discrimination. If the guessing parameter was not explicitly

differed, it was set to c = {0, .03, .07, .10, .13, .17, .20, .23, .27, .30}. The same

was true to the parameter representing the slipping error, which was set to

d = {1, .97, .93, .90, .87, .83, .80, .77, .73, .70} if not explicitly differed.

The following terms where varied over the simulated conditions.

• Number of item parameters.

The baseline in the condition with no simulated DIF is the Rasch model with

only one item parameter representing easiness. All conditions that were sim-

ulated under the 2PL model accordingly had two item parameters, easiness

and discrimination. The 4PL model adds two more representing guessing and

slipping errors. Therefore, data simulated under the 4PL model has four item

parameters.

• Magnitude of DIF.

The magnitude of DIF was varied in accordance to the parameter in which

DIF was simulated. For aj the range from 0 to 1 was chosen. For cj and dj
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Figure 4. Person-item map with the distribution of the ability parameter in one sample
and the ten item easiness parameters depicted on one latent dimension.

the range from 0 to .5 was chosen. Bigger DIF than .5 in these parameters

would be unrealistic and could lead to a large percentage of observations with

only zeros or ones.

• Number of items with DIF.

Every variable constellation was simulated concerning 0, 2, 5 or 8 number of

items. Conditions with zero influenced items are used as a control inside every

condition. The other three levels are representative for the inclusion of DIF in

few, half and many items of an entire test.

• Parameter(s) effected by DIF.

DIF was always simulated in the parameter(s) new to the model, meaning

the discrimination for the 2PL model and the guessing and slipping error

parameter for the 4PL model together. There were conditions in which DIF

was simulated in the item easiness parameter as well as conditions were DIF

only affected the item easiness parameter for the comparison of uniform and

crossing.
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• Covariable determining DIF.

As was stated in the introduction, the Rasch-tree method uses different test

statistics for detecting groups in categorical or continuous covariables (equa-

tions 4, 5). DIF was therefore either simulated in categorical and continuous

covariables. The categorical covariable was dichotomous. The continuous was

drawn from a uniform distribution with a range from 18 to 100 (in analogue

to age as an often used covariable). Here, the cut point for the subgroups had

to be determined, leaving more room for estimation errors. The simulated cut

point was chosen towards the middle of the variable at 40 in order to avoid loss

of Power which can occur with cut points towards the edges of a covariable

(Strobl et al., 2015). Although the covariable was continuous, DIF was sim-

ulated as if the cut point created a dichotomy. Finally, there were conditions

as well in which DIF was simulated in regard to both covariables.

Criterion variables

To evaluate the impact of the simulated conditions, the following variables were

conducted and compared. No standard values were set for the criterion variables.

Every condition contained a simulation where no items contain DIF which was used

as a baseline to compare the other results to.

• Significant results.

The number of significant results indicates how often DIF was found. This

either represents the Power of the Rasch-trees as a global DIF test, when DIF

was simulated, or the Type-I-Error rate, when it was not.

• Number of end nodes.

A feature of Rasch-trees is, that they not only indicate that DIF was found, but

also in how many and which covariables as well as the number and placement

of cut points. The number of end nodes, which represent the subgroups in

which no further split was carried out, therefore provides further information

on the detected DIF. In case of conditions where no DIF was simulated, this

metric not only shows the number of false positives, but also how far off the
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method was on average. In this case, the heavy influence of extreme data

points is welcomed, as these could lead to highly wrong conclusions, even if

rarely.

• RMSE.

The root mean square error of the item easiness parameter was reported.

It gives a representation of the estimations accuracy for the item easiness

parameter.

Results

Simulations without DIF

Figure 5 shows the influence of rising aj, cj and dj parameters respectively on

the probability of a significant result (top), the number of end nodes in the Rasch-

trees (middle) and the RMSE (bottom) without simulated DIF. In the left column

(graphs 1), the item discrimination aj was varied from 0.1 to 1 in either zero, two,

five or eight items. The other items had a fixed item discrimination of 1. In the

middle column (graphs 2) , the guessing parameter cj was varied from 0 to 0.5 in

either zero, two, five or eight items. The other items had a fixed guessing parameter

of 0 and all items had a fixed slipping error parameter dj of 1. The slipping error

parameter dj was varied inversely to the guessing parameter, depicted in the right

column (graphs 3).

Neither the Type-I-Error nor the number of end nodes are affected by any of the

new parameters, impartial of the number of items diverging from the Rasch model

restriction (aj = 1, cj = 0, dj = 1 ∀ j = 1, ..., m). The RMSE is influenced by both

independent variables for all three new item parameters. With rising aj values,

the RMSE decreases, indicating a more accurate estimation of the item easiness.

Notable are the conditions with aj values .9 or 1. Here, the RMSE falls below the

conditions where no items diverge from the restriction aj = 0 ∀ j = 1, ..., m. A rising

cj-value leads to a higher RMSE, the same goes for a sinking dj-value. The change

in these two parameters lead to a smaller increase in comparison to the influence of
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the item discrimination. The influence of all three new item parameters are bigger,

the more items had new parameters diverge from the Rasch model restrictions.
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Figure 5. Type-I-Error rate (top), Number of end nodes in the Rasch-trees (middle) and
Root mean square error (RMSE, bottom) in the end nodes dependent on the values of aj
(left), cj (middle), dj (right) respectively without simulated DIF in these parameters
(green dots = 0 items, red triangles = 2 items, blue cubes = 5 items, black diamonds = 8
items with divergent parameter values from aj = 1 or cj = 0, dj = 1 ∀ j = 1, ..., m).

The main results (graphs 4-11) are presented separately for the three criterion

variables in order to facilitate comparisons and create a comprehensive overview.

Probability of a significant result

Figure 6 illustrates the influence of the different simulated conditions on the

probability of a significant result in the Rasch-trees. This shows the Power of the
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Rasch-trees as a global DIF test when it was simulated and the Type-I-Error rate

when no DIF was simulated. The top four graphs depict simulations under the 2PL

model, while the bottom four graphs show simulations under the 4PL model. In

each case, the top two graphs have no simulated DIF in the item easiness parameter

bj, while the conditions depicted in the bottom two graphs include a simulated DIF

according to the same covariable that influences the new parameters with a fixed

value of 0.5 in bj. This means, the focal group has a higher item easiness of 0.5 in

comparison to the reference group. Generally, the left side graphs include simulated

DIF in regard to the categorical, dichotomous covariable. The right side graphs have

simulated DIF in regard to the continuous covariable, ranging from 18 to 100 and

cut at 40. A horizontal line was added at .1, marking the α-level.

All conditions where no item is affected by DIF (green dots) serve as a baseline

to compare the other conditions to. They are located at the set α-level over all

conditions. The Type-I-Error rate does not inflate regardless of the used model.

The same goes for the conditions in which no DIF in the item easiness is simulated

(graphs 4.1, 5.1, 8.1, 9.1) and the DIF value for the new parameters is 0. There

is no DIF to detect in these conditions. Therefore, the probability of a significant

result unitarily drops to the α-level. Notably, when DIF is simulated in the item

easiness, but not in the new parameters of the 4PL model (graphs 10.1, 11.1), the

probability of a significant result stays at the α-level as well.

When the DIF value in the new parameters is rising, the probability of a signi-

ficant result does not rise quicker in graph 10.1 than in graph 8.1, where no further

DIF in the item easiness is present. This is the case for the conditions regarding the

categorical covariable. In the conditions with the continuous covariable under the

4PL model, the probability of a significant result rises quicker in graph 11.1 than

in graph 9.1. It is also notable, that in all graphs of the 4PL model, the points of

the conditions with two, five and eight items affected lie on top of each other under

otherwise identical conditions.

The Rasch-trees detect DIF in the bj under the 2PL model (graphs 6.1 and

7.1). Here, when the DIF value for aj is 0, the probability of a significant result is

higher than the α-level. As there is no DIF in aj, the Rasch-trees seem to detect the
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DIF in bj. However, the probability is unanimously low, almost at the α-level, for

the DIF value of 0.1. In general with the 2PL model, the probability of a significant

result rises almost logarithmically with rising DIF value.

Number of end nodes

Figure 7 is structured in the same way as Figure 8 and shows the influence of

the DIF value and number of affected items in different conditions on the number

of end nodes in the Rasch-trees. When no item is affected and there is no DIF in

bj, the average number of end nodes in the Rasch-trees should be slightly above 1.

When DIF is simulated in any way, there should be slightly below two nodes, as

both covariables create two groups. Here, both DIF for bj and for the new item

parameters in each model are simulated in parallel to the same groups. The number

of end nodes and the probability of a significant result are directly dependent on

another, but the number of end nodes provides the additional information of how

many splits are made when DIF was detected.

Because of this dependency, some of the patterns are parallel to the results in

figure 6. All conditions with zero items affected by DIF show a little over 1 node on

average. The points under the 4PL model and with more than zero items affected

also lay on top of each other. In the 2PL model, the conditions with two and five

items affected performed similarly, while the conditions with eight affected items on

average have more nodes at a smaller DIF value. DIF in the new parameters of the

4PL model (graphs 8.2-11.2) generally have less of an impact on the number of end

nodes than DIF in the item discrimination under the 2PL model (graphs 4.2-7.2).

The DIF in bj under the 4PL model (graphs 10.2 and 11.2) is not detected as often

as under the 2PL model (graphs 6.2 and 7.2).

More notable is the upper asymptote which all conditions under the 2PL model

(graphs 4.2-7.2) and the conditions in graph 11.2 under the 4PL approach. No

condition has more than 2.2 nodes on average even if the Power approaches 1 in

the same conditions (4.1-7.1 and 11.1). A line was added at 2.2 to highlight the

asymptote. It is reached at the same DIF values as the Power asymptote of 1 in

figure 6. Even high values of DIF in the new parameters of the 4PL model does not
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Figure 6. Probability of a significant result in the Rasch-trees dependent on the scale of
DIF and the number of items affected by DIF (green dots = 0 items, red triangles = 2
items, blue cubes = 5 items, black diamonds = 8 items affected).



On the detection of DIF under higher level IRT-models using Rasch-trees 21

2PL
Categorical covariable Continuous covariable

N
o
D
IF

in
it
em

ea
si
ne
ss

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

DIF value

N
um

be
r 

of
 n

od
es

4.2

● ● ● ●
● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

DIF value

N
um

be
r 

of
 n

od
es

5.2

● ● ● ● ● ● ●
● ● ● ●

D
IF

in
it
em

ea
si
ne
ss

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

DIF value

N
um

be
r 

of
 n

od
es

6.2

● ● ● ● ● ●
● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

DIF value

N
um

be
r 

of
 n

od
es

7.2

● ● ● ● ● ● ● ● ● ● ●

4PL
Categorical covariable Continuous covariable

N
o
D
IF

in
it
em

ea
si
ne
ss

0.0 0.1 0.2 0.3 0.4 0.5

1.
0

1.
5

2.
0

2.
5

3.
0

DIF value

N
um

be
r 

of
 n

od
es

8.2

● ● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5

1.
0

1.
5

2.
0

2.
5

3.
0

DIF value

N
um

be
r 

of
 n

od
es

9.2

● ● ● ● ● ●

D
IF

in
it
em

ea
si
ne
ss

0.0 0.1 0.2 0.3 0.4 0.5

1.
0

1.
5

2.
0

2.
5

3.
0

DIF value

N
um

be
r 

of
 n

od
es

10.2

● ● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5

1.
0

1.
5

2.
0

2.
5

3.
0

DIF value

N
um

be
r 

of
 n

od
es

11.2

● ● ● ● ● ●

Figure 7. Number of end nodes in the Rasch-trees dependent on the scale of DIF and the
number of items affected by DIF (green dots = 0 items, red triangles = 2 items, blue
cubes = 5 items, black diamonds = 8 items affected).
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Figure 8. Root mean square error (RMSE) of the item easiness estimations in the
Rasch-tree end nodes dependent on the scale of DIF and the number of items affected by
DIF (green dots = 0 items, red triangles = 2 items, blue cubes = 5 items, black
diamonds = 8 items affected).
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raise the number of end nodes largely except for graph 11.2.

Root Mean Square Error

Figure 8 is structured in the same way as Figure 6 or Figure 7 and shows the

influence of the DIF value and number of affected items in different conditions on

the RMSE in the end nodes.

The conditions with a DIF value of 0 show a similar pattern as could be observed

in the probability of a correct answer and the number of end nodes. They lay on top

of each other except in the graphs 6.3, 7.3 and 11.3. The RMSE is not especially

affected by the DIF value or the number of affected items under the 4PL model.

Only in graph 11.3, when DIF in the continuous covariable is affecting bj, cj and dj,

correspond higher DIF values to slightly higher RMSE. This is not dependent on the

number of affected items. Notably, the conditions with no affected items have an

increased RMSE under the 4PL model as well. Even higher RMSE can be observed

in the graphs 8.3, 9.3, 10.3. Here, neither the DIF value nor the number of affected

items influences the RMSE. It is unitarily located at an increased level.

For the 2PL model, the conditions with no affected items were on the baseline

level seen in the simulations without DIF. The more items were affected, the higher

was the RMSE, but the higher the DIF value, the lower the RMSE. This relation

between DIF value and RMSE was more distinct in the conditions with the categor-

ical covariable than in the conditions with the continuous covariable. Whether DIF

was present in bj did not effect this pattern.

Crossing DIF

The conditions where DIF was simulated in the item discrimination, but not in

the item easiness have intersecting ICCs of the resulting subgroups, thus creating

crossing DIF. These conditions were already observed in the graphs 4, 5, 8 and 9.

Figure 10 and 11 in the Appendix compare them with uniform DIF, where only

the item easiness is affected by DIF. Figure 9 in the Appendix shows the ICCs of

one data set out of the simulations with uniform and one with crossing DIF in the
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categorical covariable. The Rasch model still does not apply here as aj is not set

to 1 in all items. There are no notable differences in any criterion variable between

the conditions with uniform or crossing DIF.

DIF in two covariables

In all previous conditions, DIF was simulated in regard to the categorical or the

continuous covariable, but only one at a time. The following conditions (Figures 12

and 13 in the Appendix) were simulated with DIF in regard to both the categorical

and the continuous covariable. This means that more than two subgroups were

created. The DIF value of the continuous covariable was kept constant, while the

DIF value of the categorical covariable was varied as seen before. Also like before,

DIF was always affecting aj under the 2PL model and cj, dj under the 4PL model. In

half of the conditions, bj was affected as well in regard to the continuous covariable

with a constant value of 0.5. Because the DIF value in the categorical was varied, the

results are best compared to the graphs 4,6,8 and 10, where DIF in the categorical

covariable was varied, but no DIF in the continuous covariable was present. Thereby,

graph 16, where DIF was affecting aj and bj, is unremarkable compared to graph

6. The general rise of Power is similar in 14.2 compared to 4.2, although it begins

at a lower DIF value. Although more subgroups were simulated, the number of end

nodes does not rise. To the contrary, a higher DIF value is needed and the upper

asymptote is lowered in 14.1. In contrast to earlier results, the conditions under the

4PL level show a rise in Power which starts at a lower DIF value than under the

2PL model. These conditions now also reach the upper asymptote of 2.2 in regard

to the number of end nodes. The RMSE is unaffected by the simulation regarding

two covariables.

Discussion

For the current work, various simulations were performed in order to assess

the effects of model misspecification, more specific the false assumption that the

Rasch model applies to data for detecting DIF with the Rasch-tree method. The
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overarching research question was whether DIF detection can still be achieved even

if the restrictions of the Rasch model are not met. The results show, that the

specifics of DIF, model parameters and relevant covariable are needed to answer

this question.

DIF in the item easiness parameter, which should be detected reliably with

the Rasch-tree method, is more likely to be detected when the data follows the 2PL

model in comparison to the 4PL model. The 4PL model also results in a less accurate

estimation of the item easiness. Without DIF, the RMSE was generally higher, the

more and the further the item parameters stray away from the Rasch model. As the

Rasch-trees assume the Rasch model for their estimations, this was to be expected.

The Type-I-Error rate is not inflated regardless of the used model and even when

DIF was present in more than one covariate. When DIF was simulated in the item

easiness, but not in the new parameters of the 4PL model (graphs 10.1, 11.1), the

probability of a significant result is also at the α-level. It should be higher as DIF

is present in the item easiness, which the Rasch-trees should be able to detect.

While additional DIF in the item easiness parameter leads to a faster rise of

Power under the 4PL model (graph 11.1) compared to the same conditions without

DIF in item easiness (graph 9.1), the same pattern can not be observed under the

2PL model. Comparing graph 7.1 and graph 5.1, the Power with eight affected

items is roughly the same, but rises at a later DIF value in graph 7.1 when two or

five items are affected. The addition of DIF in the item discrimination has opposing

effects under the 2PL compared to the 4PL model. This can also be observed

with categorical covariables in the graphs 4.1 and 6.1 compared to 8.1 and 10.1,

although less pronounced. DIF in the item discrimination parameter seems to be

detected as DIF in the item easiness parameter so that the addition of DIF in the

item easiness does not further the detection any more. This presumption could also

explain the lack of difference in uniform and crossing DIF and could be a unique

property of Rasch-trees. Most DIF tests either underperform with crossing DIF or

were specifically constructed for it. For a test that was not designed for it, the lack

of Power loss is certainly an asset.

The confounding of DIF in item discrimination for DIF in item easiness is
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further supported by the upper asymptote observed for the number of end nodes,

which seems to be independent of DIF in item easiness. The assessment, that

there are not more than two groups even when DIF was present in more than one

item parameter, was correct and perhaps trivial for the categorical covariable. The

continuous covariable however yields the potential for systematically detecting more

than two groups. This is not the case. The upper asymptote is located around

2.2 for all graphs under the 2PL model and graphs under the 4PL model where

DIF was simulated in regard to two covariables. The value of 2.2 as opposed to 2,

which should be the theoretical asymptote, can probably attributed to the Type-

I-Error. It seems that no condition produces an exceptional number of outliers,

which would drag the asymptote upwards. Therefore, no condition has drastically

higher consequences in the form of identifying extremely more subgroups sometimes.

On the contrary, even when more than two groups should be detected, the upper

asymptote does not move upwards.

DIF in the new parameters of the 4PL model seems not to be mistaken for DIF

in the item easiness so that the addition of DIF in the item easiness accelerates the

rise of the Power, at least in regard to the continuous covariable (graphs 9.1, 11.1).

It is further accelerated when DIF is present in regard to both covariables (graphs

15.1, 17.1). This can also be observed in regard to the number of end nodes and the

RMSE. For the number of end nodes, even high values of DIF in the new parameters

of the 4PL model does not raise the number of nodes largely except for graph 11.

The RMSE as well seemed not especially affected by the DIF value or the number

of affected items under the 4PL model. This stands in slight contrast to the effect

changing cj and dj parameters had in the simulations without DIF. However, the

RMSE is in general higher under the 4PL model, which is in agreement with the

simulations without DIF.

The most straight forward explanation for this is that the Rasch-tree method

actually recognises the difference between cj, dj and bj better than the difference

between aj and bj. This is supported by the behaviour of the Rasch-trees in regard

to the continuous covariable, but contradicted by the behaviour in regard to the

categorical covariable. A distinction between the parameters and DIF in them seems
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only present in regard to the continuous covariable. Another possibility is that

the parameter estimation under the 4PL model is not accurate enough to detect

DIF. This is supported by the raised RMSE values under all 4PL conditions, but

contradicted by graph 11.1, where the DIF detection seems to be only slightly less

sensitive for DIF in bj than the 2PL equivalent in graph 7.1. Then again, neither of

these reasons can explain that the number of nodes and the Power rise when DIF

was simulated in regards of two different covariables. This rather suggests that the

simulated DIF was not severe enough in cj and dj to be detected.

Another curiosity in regard to the probability of a correct answer are the graphs

6.1 and 7.1, where the conditions with a DIF value of zero have a probability of a

significant result above α. This was to be expected, as DIF is still present in the

item easiness parameter. Curious are the conditions with a DIF value of 0.1. Here,

the probability unitarily drops to the α-level. A similar abnormality can be observed

in graph 1.3. The RMSE with aj values of .9 or 1 are lower when two, five or eight

is lower compared to the conditions when no item is affected. Especially with an

aj value of 1, the RMSE should be equal because not affected items had a set aj

of 1 as well. When all items have the same discrimination level and nothing else

is altered, it is unclear where this discrepancy originates. The RMSE also behaves

contraintuitively when simulating DIF under the 2PL model. The more items were

affected, the higher the RMSE. However, the higher the DIF value, the lower is the

RMSE. This relation between DIF value and RMSE is more distinct in the conditions

with the categorical covariable than in the conditions with the continuous covariable.

Whether DIF is present in the item easiness does not effect this pattern, neither does

the simulation of DIF in regard two both covariables. This is an anomaly that can

not be explained with the current results.

Stability of the Rasch model

This discussion on the detection of DIF is an expansion of the general discus-

sion whether the Rasch model provides stable estimations when the data corresponds

more to a higher level IRT model. There is no real agreement on this issue. While

Dinero and Haertel (1977) argue, that the Rasch model is resilient at least consider-



On the detection of DIF under higher level IRT-models using Rasch-trees 28

ing deviations from aj = 1 ∀ 1, ..., m, while Skaggs and Lissitz (1986) identify it as

a notable risk factor. It interfered in the parameter estimation more severely than

a deviation from the specification cj = 0. A similar observation can be made for

the current data, as the 4PL model increases the RMSE more notably and mostly

independent from DIF.

Forsyth, Saisangjan, and Gilmer (1981) pointed out that IRT models in general

have strong assumptions, which are not always met. They argued, the general

IRT model assumptions should be considered before the additional assumptions

of the specific models and stresses the examination of unidimensionality and local

stochastic independence of the items. Their results suggest, that the Rasch model is

more robust against violations of these two assumptions than expected. Particularly

violating unidimensionality did not affect the model fit extremely. Then again, a

significant stint in the model fit was found by Slinde and Linn (1979) when examining

violations of unidimensionality, local stochastic independence and power test. The

power test assumption is relevant, because it implies that every question has the

same probability of being processed. If this was not the case, as in speed tests,

the probability of a correct answer would be dependent on not only the person and

item parameters, a core assumption of IRT models. None of these assumptions were

actively manipulated in the current simulations, but rather they were all unitarily

met. Consequently, they could not interfere with the current results, but should in

the future be accounted for actively in the light of the earlier comment, that DIF is

sometimes interpreted as a second dimension for the person parameter.

Slinde and Linn (1979) emphasise again that higher level IRT models need a

greater sample size and test length to achieve acceptable fit. The drop caused by

their violations was therefore not compensable by using higher level IRT models with

the same sample size and test length. The applicability of the Rasch model with

small sample size is an advantage also stressed by van de Vijver (1986). They came

to the conclusion that the Rasch model is a viable alternative for small sample sizes

and test lengths even if bj 6= 1 and cj > 0 apply. This claim was backed by them

finding hardly any diminishing of estimation accuracy when item discrimination

was raised. The simulations at hand, which did not include DIF but altered the
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item discrimination stands in contrast to this observations. In van de Vijver (1986),

higher guessing parameter only had an impact on the variance of the estimations not

the accuracy as well. This is consistent with the current simulations with varying

guessing parameters, but in slight contrast to the RMSE in the conditions with DIF,

where the RMSE was consistently raised.

Although there is no consent on the true robustness of the Rasch model, not

only because the observed violations vary greatly, the overall findings seem to be

leaning towards a wider applicability than its strict specifications seem to indicate.

Rasch-trees as a method for DIF detection on the other hand seem to be vulnerable

to some variations of parameters, though not all. This is an anomaly which can not

be explained with the current results.

Limitations

As with every simulation study, the results can only be applied to the considered

scenarios. The work at hand is explorative, but decisions over which conditions were

simulated had to be made which leads to the exclusion of many other possible condi-

tions. Especially the terms under which DIF were simulated were very constrained.

Categorical covariables with more than two categories as well as continuous cov-

ariables with more than one cut point were excluded. More complicated DIF, for

example with a u-form, interactions between the variables or cancellation, were also

not explored. This is unfortunate, because the built-in search for a cut point and

the graphic presentation off Rasch-trees are their most unique asset. This means, it

lends itself to situations where more complex DIF is to be expected. An exploration

of truly continuously simulated DIF would surely be of interest as well to test the

cut point estimation of Rasch-trees. The conditions with more than two subgroups

suggest that the Rasch-trees could struggle with more complicated DIF under higher

level models.

Basic parameters like test length and sample size were not altered as well. This

is especially unfortunate, as accurate estimations in higher level IRT models require

longer tests (Slinde & Linn, 1979). Both of these parameters were restrained in the

current simulation study by the available computing power and time, but should be
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expanded in future work. The current study only presented very simple influences

DIF can take. This allowed the exploration of other interesting connections like

scenarios, where DIF occurs in more than one parameter or the differentiation on how

many items are influenced by DIF. Nevertheless, the results have to be interpreted

with the limited conditions in mind.

Conclusion

To come back to the research question: Can the Rasch-tree method still detect

DIF in data, which was simulated under higher level IRT models? It has to be

acknowledged first that Rasch-trees were designed to detect DIF in the item easiness

parameter. The current simulations deliberately broke this intended use and also

manipulated DIF in other item parameters. Therefore, if DIF is detected, it is not

identified correctly, but misplaced as DIF in the item easiness in the conditions were

there is no DIF in the item easiness. This is certainly preferable to not detecting

it at all. In general, the Power can reach desirable levels if the DIF value is high

enough under the 2PL model. Detection was less likely for the new parameters of

the 4PL model. The estimation accuracy of the item easiness parameter is highly

disturbed under the 4PL model, regardless of DIF conditions, less so with the 2PL

model. Here, it is more dependent on the specific condition. No condition resulted

in drastically more subgroups. The Rasch-trees still seem to be able to detect the

correct number of necessary cuts when DIF was simulated regarding one covariable.

The Type-I-Error rate was mostly unaffected by the varying conditions. In this

regard, Rasch-trees offer a possibility for detecting DIF in the item discrimination

as well, less in the guessing or slipping error parameter. The consequences of using

data with model misspecifications are generally worse under the 4PL model and lean

towards missing DIF, which is present in the data. There is certainly no elevated

risk of finding DIF, which is not present.
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Appendix

Examples for Item Characteristic curves
Uniform DIF Crossing DIF

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

P
(X

 =
 1

| θ
,b

j,a
j,c

j,d
j)

−10 −5 0 5 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

θ

P
(X

 =
 1

| θ
,b

j,a
j,c

j,d
j)

Figure 9. Exemplary Item characteristic curves for one of the simulated data sets with
uniform or crossing DIF in a categorical covariable.
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Figure 10. Probability of a correct answer and Number of end nodes in the Rasch-trees
dependent on the scale of DIF and the number of affected items (green dots = 0 items,
red triangles = 2 items, blue cubes = 5 items, black diamonds = 8 items affected) with
crossing DIF or uniform DIF.
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Root mean square error
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Figure 11. Root mean square error (RMSE) dependent on the value of DIF and the
number of affected items (green dots = 0 items, red triangles = 2 items, blue cubes = 5
items, black diamonds = 8 items affected) with crossing DIF or uniform DIF.
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Figure 12. Probability of a correct answer and Number of end nodes in the Rasch-trees
dependent on the scale of DIF and the number of affected items (green dots = 0 items,
red triangles = 2 items, blue cubes = 5 items, black diamonds = 8 items affected) with
DIF in both a categorical covariable and a continuous covariable.
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Figure 13. Root mean square error (RMSE) dependent on the scale of DIF and the
number of affected items (green dots = 0 items, red triangles = 2 items, blue cubes = 5
items, black diamonds = 8 items affected) with DIF in both a categorical covariable and
a continuous covariable.
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